class: middle, title-slide <!-- top logo (comment to remove or edit on `conf/css/style.css:23`) --> <div class="lab-logo"></div> <!-- <div class="uni-logo"></div> --> # Warming impacts in fish food web dynamics <hr width="65%" align="left" size="0.3" color="orange"></hr> ## Econet 2021 ### Azenor Bideault, Matthieu Barbier, Arnaud Sentis, <br> Michel Loreau & Dominique Gravel <br><br> [<i class="fa fa-github fa-lg" style="color:#e7e8e2"></i> Azenor/talk_Econet2021](https://github.com/Azenor/talk_Econet2021) [<i class="fa fa-twitter fa-lg" style="color:#e7e8e2"></i> @Azenor_Bideault](https://twitter.com/Azenor_Bideault) <!-- --- # Food webs are not static objects .pull-left[ ![:scale 120%](images/network1.svg)] .pull-right[ - Identity of species - Number of species - Biomass - Interactions - Interaction strength - Stability] --> --- # Trophic interactions .center[Are at the core of ecological systems] ![](images/otter.png) .center[Trophic cascade : Sea otters indirectly enhance kelp abundance by consuming herbivorous sea urchins] .cite[Estes et al. [2011]] --- # Temperature .center[Climate change ![:scale 50%](images/global_warming.jpg) **What are the effects of temperature ?**] --- # Direct effect of temperature <br> .center[ On populations <br> ![](images/biological_rates_temp1.svg)] --- # Direct effect of temperature <br> .center[ On their interactions <br> ![](images/biological_rates_temp2.svg)] --- # Effect of temperature <br> .center[ On the dynamics of food webs <br> ![](images/biological_rates_temp3.svg) - Alter trophic control - Decrease stability - Trigger extinctions] --- # No synthetic understanding yet Most studies explore : - One particular ecological system - Food chains (vs food webs) with different - experimental design - study system - theoretical framework - model assumptions <br> .center[**Hard to disentangle the various effects of temperature** **How do they propagate from the populations to the community?**] --- # Food webs dynamical properties <br><br> .center[![:scale 200%](images/measures_chap2.svg) Effects of warming : compare changes in the dynamics at the community and species levels] --- class: middle, center, inverse # Method --- # Fish food webs at large scale <br> .center[![:scale 90%](images/map_lat_long.png)] --- # Data .center[![:scale 90%](images/schema_data.svg)] <br><br> .cite[Albouy et al [2019], Irigoien et al [2014]] --- # Theoretical approach <br> .center[**Modelling communities to infer their structural and dynamical properties**] Lotka-Volterra system `\begin{align} \dfrac{dB_i}{dt} &= \textrm{production} - \textrm{predation losses} - \textrm{internal losses} \\ \frac{dB_i}{dt} &= g_iB_i + \sum_j \epsilon A_{ij} B_iB_j-\sum_k A_{ki} B_iB_k - D_iB_i^2 \end{align}` <br> - B biomass - A<sub>ij</sub> interaction matrix - g<sub>i</sub> net growth rate - D<sub>i</sub> self regulation - *ϵ* conversion efficiency --- # Temperature and body-mass dependence of biological rates .pull-left[ <br>![](images/biological_rates_temp12.svg)] .pull-right[ `\(\large b_i = m_i^\beta b_0e^{-E/kT}\)` <br> * m body mass * *β* exponent * b<sub>0</sub>, k constants * T temperature * E activation energy] <br> .center[**Growth and attack rate**] .cite[Savage et al [2004], Li et al [2018]] --- # Theoretical approach <br> .center[**Modelling communities to infer their structural and dynamical properties**] Lotka-Volterra system `\begin{align} \frac{dB_i}{dt} = g_i + \sum_j \epsilon A_{ij} B_j-\sum_k A_{ki} B_k - D_iB_i \end{align}` <br> - **B biomass** - A interaction matrix - g net growth rate - **D self regulation** - *ϵ* conversion efficiency --- # Self-regulation .font80[An important but not well known parameter] <br> .center[**Intraspecific density dependent regulation** <br> A population’s growth rate is negatively affected by its own population density] <br> Examples : - territoriality - infanticide - intra-guild predation - competition for light <br> .center[**Important to match stability levels observed in nature**] --- # Estimation of species biomass .center[Self-regulation is completely unknown...<br> Biomass can be inferred from allometric relationship] .center[ ![:scale 60%](images/hatton.png)] .cite[Hatton et al [2019]] --- # Method to estimate self-regulation <br> `\begin{align} \frac{dB_i}{dt} = g_iB_i + \sum_j \epsilon A_{ij} B_iB_j-\sum_k A_{ki} B_iB_k - D_iB_i^2 \end{align}` <br><br> .center[ - using estimations of biological rates and biomass - allow coexistence - equilibrium] <br><br> .center[**Simulate the dynamics of communities and measure some dynamical properties**] --- # Metrics of community dynamics <br> .center[ ![:scale 200%](images/measures_chap2_1.svg) **Trophic control (bottom-up vs top-down)** `\begin{align} \lambda = \frac{\epsilon A_{21}^2}{D_1D_2} \end{align}` ] --- # Metrics of community dynamics <br> .center[ ![:scale 200%](images/measures_chap2_2.svg) **Sum species biomass**] --- # Metrics of species dynamics <br> .center[ ![:scale 200%](images/measures_chap2_3.svg) **Relative change in species biomass**] --- # Metrics of community dynamics <br> .center[ ![:scale 200%](images/measures_chap2_4.svg) **Variability : temporal biomass variance in response to stochastic pertubations (community average)** `\begin{align} \mathcal{V} = tr(C) \end{align}` `\(C\)` covariance matrix, solution of the Lyapunov equation `\(JC+CJ^T = \mathbb I\)` with `\(J\)` Jacobian matrix] .cite[Arnoldi et al [2019]] --- # Measures of community dynamics <br> .center[ ![:scale 200%](images/measures_chap2_5.svg) **Collectivity : importance of indirect interactions (collectivity = 1, a change in species abundance affect other species far in the network)** `\begin{align} \phi = \rho(M_{ij}) = \max_i|\lambda_i(M)| \end{align}` spectral radius of `\(M_{ij} = A_{ij}/D_i\)`, `\(\lambda_i(M)\)` is the ith eigenvalue of matrix `\(M\)`] .cite[Arnoldi et al [in prep]] --- # Simulate warming .center[![:scale 80%](images/temp_network2.svg) - Direct effect of warming on species biological rates - Compute the relative change in community metrics `\begin{align} \Delta(x) = \textrm{log}_{10}(x_{warm}) - \textrm{log}_{10}(x) \approx (x_{warm} - x)/x \end{align}` ] --- class: inverse, middle, center # Results --- # Moderate effect on community properties <br> .center[![](images/figure_metric_change_noTSR.svg)] --- # Strong effect at the species level .center[![:scale 70%](images/figure_biomass_change_noTSR.png)] --- # To conclude <br><br> .center[**Warming affects individual species more significantly than communities as an entity**] - Moderate increase in top-down control and collectivity and decrease in variability - Stronger variation in species biomass, especially species from trophic levels 2 and 3 <br><br> .center[Focus on direct effect of temperature on biological rates and interactions] --- # Entangled effects of temperature .center[Apply the framework to identify latitudinal variation in trophic control, variability and collectivity ![:scale 70%](images/map_expl_variables.svg) Other variables drive variation in community dynamics <br> Indirect effects of warming] --- class: inverse .pull-left1[ <br> .font180[Stronger impact of warming at the species level than at the community level] <br><br><br><br><br> **Special thanks to** - You for listening - My collaborators and supervisors - Will for the nice template ] .pull-right1[ <br> ![:scale 200%](images/logo.png) ]